

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

Email : hegpgcgun@mp.gov.in

Website : https://highereducation.mp.gov.in/?orgid=179

Bachelor of Science

Subject: Physics

Program Specific Outcomes

- 1. This course would provide the opportunity to the students to understand the basic laws of physics and make them able to understand the significance of various physical phenomena.
- 2. It inspires to carryout experiments to understand the laws and concepts of physics.
- 3. It makes them able to apply the theories learnt and the skills required to solve real time problems.
- 4. It allows them to analyse the wide range of problem-solving skills both analytically and technically.

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

Email : hegpgcgun@mp.gov.in

Website : https://highereducation.mp.gov.in/?orgid=179

I Year / Certificate Course

COURSE TITLE	COURSE LEARNING OUTCOMES
THERMODYNAMICS AND STATISTICAL PHYSICS S1-PHYS-1T Major-I	 The course would enable students to understand the basic physics of heat and temperature in relation to energy, work, radiation and matter. Students are expected to learn that how laws of thermodynamics are used in a heat engine to transform heat into work. This course will also develop an understanding of the various concepts of statistics and the methods to apply them in thermodynamics. Students will understand the importance of studying statistical mechanics with the behaviour of particles under classical and
MECHANICS AND GENERAL PROPERTIES OF MATTER S1-PHYS-2T Major-II / Minor / Open Elective	 Students will acquire the knowledge of basic mathematical methods to solve the various problems in Physics. The course would empower students to develop the idea about the behaviour of physical bodies. It will provide the basic concepts related to the motion of all objects around us in daily life. Students would be able to build foundation to various applied field in science and technology especially in the field of mechanical engineering. Students will be able to understand the relativistic effect and the relation between energy and mass.
THERMODYNAMICS AND STATISTICAL PHYSICS LAB (PRACTICAL) S1-PHYS-1P Major-I (Practical)	 Students would gain practical knowledge about heat and radiation by performing various experiments. Students will acquire knowledge about the different forms of distribution of subatomic particles in the system using statistical methods. Students will be able to use various thermodynamical instruments in daily life.
MECHANICS AND GENERAL PROPERTIES OF MATTER LAB (PRACTICAL) S1-PHYS-2P Major-II / Minor / Open Elective (Practical)	 Students would acquire basic practical knowledge related to mechanics through the experiments. Students will be familiar with various measurement devices by which they can measure various physical quantities with accuracy. Students will develop the concept related to the mechanics and properties of matter.

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

Email : hegpgcgun@mp.gov.in

Website : https://highereducation.mp.gov.in/?orgid=179

II Year / Diploma Course

COURSE TITLE	COURSE LEARNING OUTCOMES
	After the completion of the course, students should be able to-
WAVES AND OPTICS	1. Develop an understanding of various aspects of harmonic
	oscillations and waves specially superposition of collinear and
S2-PHVS-1T	perpendicular harmonic oscillations
Major-I	2. Explain several phenomena of daily life that can be explained as
	wave phenomena
	3. Understand various optical phenomena, principles, workings and
	applications
	4. Use the principles of wave motion and explain the physics of
(polarisation, interference and diffraction
	After the completion of the course, students should be able to-
ELECTRICITY MAGNETISM	1. Understand the basic concepts of electricity and magnetism and
AND ELECTROMAGNETIC	their applications
THEORY	2. Apply various network theorems and their applications in
	electronics, electrical circuit analysis, and electrical machines
S2-PHYS-2T	3. Understand the construction and working of ballistic galvanometer
Major-II / Minor /	and cathode ray oscilloscope
Open Elective	4. Understand the concept of electromagnetic wave and their
	reflection from a plane surface
2	After the completion of the course, students should be able to-
WAVES AND OPTICS LAB	1. Study waves and their superposition using cathode ray
(PRACTICAL)	oscilloscope
	2. Explain various optical properties like interface, diffraction and
S2-PHYS-1P	polarization
Major-I (Practical)	3. Use various optical instruments like telescope, grating,
ELECTDICITY MACNETICM	After the completion of the course students should be able to
ELECTRICITY MAGNETISM	After the completion of the course, students should be able to-
AND EMT LAB	1. Verify various laws in electricity and magnetism such as Lenz's law,
(PRACTICAL)	2 Understand the construction working and uses of verious
S2-PHYS-2P	2. Onderstand the construction, working and uses of various measuring instruments
Major-II / Minor /	3 Verify various network theorems using simple electronic circuits
Open Elective (Practical)	s. terry various network electronis, using simple electronic circuits

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

 7542-251641
 Email : hegpgcgun@mp.gov.in

Website : https://highereducation.mp.gov.in/?orgid=179

III Year

COURSE TITLE	COURSE LEARNING OUTCOMES
	1. This course will provide a basic knowledge of Quantum Mechanics
QUANTUM MECHANICS	with genesis of this theory, establishment of various postulates.
AND SPECTROSCOPY	2. Various applications like potential well, potential step, one
	dimensional harmonic oscillator, hydrogen atom problem will
RSC1V344	enrich the knowledge of Quantum Mechanics and serve as a base
Doct 1 J TT	for PG course.
Tuper-1	3. Further enrichment in the base for PG course will be obtained by
	concepts of atomic and molecular spectroscopy and their
	applications.
(4. Knowledge of Nuclear Physics and elementary Particle Physics will
	serve as fourth pillar for the foundation of PG course.
	1. Solid State Physics provides knowledge of crystal structure,
SOLID STATE PHYSICS	properties and applications in details.
AND ELECTRONIC DEVICES	2. Semiconductor Theory lays foundations to understand electrical
	properties of matter.
RSC1V345	3. Application of semiconductors with help of diodes, transistors,
Paner-II	amplifiers, oscillators will be obtained sufficiently.
	4. A glimpse of latest technology viz. Nanotechnology will be obtained
	to get a glimpse of current study in Physics.
J Start	1. This lab course will provide students sound knowledge of
PRACTICAL LAB	electronic instruments.
(PRACTICAL)	2. Students will be able to plot various characteristics of diodes, BJT
	and FET.
BSC1Y344(P)	3. Student will be able to handle instruments like CRO, RF Oscillator
(Practical)	power supply etc.

Govt PG College, Guna (MP)

सा विद्या या विमुक्तरे

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

-251641 Email : hegpgcgun@mp.gov.in

IRAC Beref et agent Geref RCCargo, Guas (MF)

Website : https://highereducation.mp.gov.in/?orgid=179

Master of Science in Physics

Program Specific Outcomes

Upon completion of M.Sc. Physics program, students will be able to-

- 1. Master analytic and critical thinking skills through acquired knowledge in major branches of Physics
- 2. Gain intellectual curiosity and know how to continue to learn not only areas that are relevant to Physics, but also that are important to society
- 3. Equip students for seeking suitable careers in Physics
- 4. Perform basic, applied and collaborative research
- 5. Enhance pedagogical and scientific writing skills through modern methods
- 6. Become socially and environmentally responsible citizens
- 7. Kindle entrepreneurial skills and lifelong learning

सा विद्या या विमुक्तवे

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

Email : hegpgcgun@mp.gov.in

Website : https://highereducation.mp.gov.in/?orgid=179

I Semester

COURSE TITLE	COURSE LEARNING OUTCOMES
	After the completion of the course, students should be able to-
METHODS IN	1. Learn about Gradient, Divergence and Curl in orthogonal
MATHEMATICAL PHYSICS	curvilinear and their typical applications in Physics
	2. Learn about special type of matrices that are relevant in Physics
14600.60	and then learn about tensors
MSC069	3. Study different ways of solving second order differential equations
	and familiarize with singular points
	After the completion of the course, students should be able to-
CLASSICAL MECHANICS	1. Understand the Lagrangian and Hamiltonian approaches in
	Classical Mechanics
MSC070	2. Understand the classical background of Quantum Mechanics and
MSC070	familiarize with Poisson Brackets and Hamilton -Jacobi equation
	3. Comprehend basic ideas about nonlinear equations and chaos
	After the completion of the course, students should be able to-
ELECTROMAGNETISM AND	1. Learn the fundamental interactions of electricity and magnetism,
LASER OPTICS	both as separate phenomena and as a singular electromagnetic
	force
MSC071	2. Learn the basic non-linear optics
M3C071	3. Have a clear understanding of Maxwell's equations and
2	electromagnetic boundary conditions
	After the completion of the course, students should be able to-
SEMICONDUCTOR	1. Learn about semiconductor transistor as amplifier and oscillator
ELECTRONICS	2. Learn about basic operational amplifier circuits
MSC072	3. Study application of OP-AMP as amplifiers
CENERAL PHYSICS RASED	At the end of the lab work, a student will be able to-
	1. Determine the band gap of semiconductor by four prob method
PRACIICAL	2 Measurement of Hall Coefficient of given semiconductor
(PRACTICAL)	3. Understand the basics of ontical measurements
	4. Determine forbidden gap of a diode by plotting reverse saturation
MSC073	current as a function of temperature
ELECTRONICS BASED	At the end of the lab work, a student will be able to-
	1. Have practical understanding of the characteristics of various
	diodes, transistors, Op-Amp, designing concepts of logic gates and
(PRACTICAL)	digital circuit
	2. Design & Study of Regulated Power supply
MSC074	3. Study of Transistor Amplifiers in CE. CB. and CC modes
	с — г — г — , — , — , — , — , — , — , — ,

सा विद्या या विमुक्तरे

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

641 Email : hegpgcgun@mp.gov.in

Website : https://highereducation.mp.gov.in/?orgid=179

II Semester

COURSE TITLE	COURSE LEARNING OUTCOMES
CLASSICAL	After the completion of the course, students should be able to-
ELECTRODYNAMICS,	1. Learn about Maxwell's equations and have a grasp of the idea of
PLASMA AND ANTENNAE	Electrostatics and Magnetostatics along with time varying fields
DHVSICS	2. Have a grasp of the idea of electromagnetic wave propagation
TITSICS	through wave guides and transmission lines
	3. Extend their understanding of special theory of relativity by
MSC2044	including the Relativistic Electrodynamics
	After the completion of the course, students should be able to-
NON-RELATIVISTIC	1. Understand Schrödinger and Heisenberg's formulations and their
QUANTUM MECHANICS-I	applications
	2. Understand linear vector spaces, Hilbert space, concepts of basis
MSC2045	and operators and bra and ket notation
	3. Learn theory of angular momentum and spin matrices, orbital
	angular momentum and perturbation theory
	After the completion of the course, students should be able to-
CONDENSED MATTER	1. Have a basic knowledge of crystal systems and spatial symmetries
PHYSICS –I	2. Know Bloch's theorem, energy bands and fundamental principles
	of semiconductors
MSC2046	3. Have a clear understanding of semiconductors doping, type and
	After the completion of the course students should be able to
	1 Cet a wide knowledge of numerical methods in Computational
DIGITAL ELECTRONICS,	Physics that can be used to solve many problems which does not
NUMERICAL ANALYSIS	have an analytic solution
AND COMPUTER	2. Understand Digital Electronics basics using logic gates and working
PROGRAMMING	of major digital devices like flip flops, multivibrators etc.
MSC2047	3. Understand scientific computing, error analysis using C language
	At the end of the lab work, a student will be able to-
PRACTICAL-GENERAL LAB	1. The students will gain practical knowledge in utilizing
(PRACTICAL)	spectrometer for various uses, practical handling of Lasers and
MSC2040	their applications
M3C2U40	2. Understand the basics of optical measurements
PRACTICAL-ELECTRONICS	At the end of the lab work, a student will be able to-
LAB (PRACTICAL)	1. Study of counters: Ripple, Mode 3, Mode 5 counters
MSC2334	2. Study of Shift Register
	3. Study of A/D Converter

सा विद्या या विमुक्तरे

Affiliated to Jiwaji University, Gwalior (M.P.)

Phone No.: 07542-251641

Email : hegpgcgun@mp.gov.in

ICACC Beref et agree

Website : https://highereducation.mp.gov.in/?orgid=179

III Semester

COURSE TITLE	COURSE LEARNING OUTCOMES
	After the completion of the course, students should be able to-
OUANTUM MECHANICS-II	1. Have basic knowledge about advanced techniques like
•	approximation methods for time-independent problems like the
MCCCOFADO4	WKB approximation
MSCC054301	2. Learn perturbation theory and interaction of an atom with the
	electromagnetic field
	3. Study Relativistic Quantum Mechanics using Dirac equation, Dirac
	matrices etc.
	After the completion of the course, students should be able to-
ATOMIC MOLECULAR	1. Know about different atom model and atomic systems, coupling
	schemes and their interactions with magnetic and electric fields
THISICS AND NOCLEAR	2. Apply the principle of Raman spectroscopy and its applications
INSTRUMENTATION	3. Gain ability to apply the techniques of microwave and infrared
	spectroscopy to elucidate the structure of molecules
MSCC054302	
	After the completion of the course, students should be able to-
CONDENSED MATTER	1. Study various crystal imperfections atomic diffusion and different
PHYSICS-II	kind of crystal bindings
	2. Understand different type of excitations in solid such as plasmons,
MSCCOE 4202	polaritons magnons and their importance
M3CC034303	3. Know the fundamentals of dielectric and ferroelectric properties of
	materials
	After the completion of the course, students should be able to-
MICROWAVE AND	1. Know about microwave linear beam tubes, microwave crossed
OPTICAL	beam tubes etc.
COMMUNICATION	2. Understand microwave transistor and tunnel diodes, Microwave
MSCC054304	FET and charged coupled devices
мэссоэтэот	3. Understand transmission lines and microwave measurements
PRACTICAL-I GENERAL	At the end of the lab work, a student will be able to-
PHYSICS (PRACTICAL)	1. Study of R-C circuit.
	2. Perform & determine the values by using Fabry-Perot
MSCC054307	interferometer, Ultrasonic diffractometer, GM Counter, Planck's
	constant and Stefan's constant apparatus
PRACTICAL-II	
ELECTRONICS PHYSICS	At the end of the lab work, a student will be able to-
(PRACTICAL)	Perform & learn through real-time data by using Practical set
MSCC054308	ups such as Operational Amplifiers, Power Supply

Affiliated to Jiwaji University, Gwalior (M.P.)

सा विद्या या विमुक्तरे

Phone No.: 07542-251641 Em

1 Email : hegpgcgun@mp.gov.in

IDAC Herri P ages Over PC College, Guas MPT

Website : https://highereducation.mp.gov.in/?orgid=179

IV Semester

COURSE TITLE	COURSE LEARNING OUTCOMES
<i>NUCLEAR PHYSICS</i> MSCC054401	 After the completion of the course, students should be able to- 1. Have a basic knowledge of nuclear size, shape, binding energy etc. 2. Understand characteristics of nuclear force in detail 3. Gain knowledge about various nuclear models and associated potentials 4. Acquire knowledge about nuclear decay processes and their outcomes
INSTRUMENTATION AND COSMIC RAYS MSCC054402	 After the completion of the course, students should be able to- 1. Have knowledge about various electronic devices and their components 2. Understand X-Ray spectroscopy and crystal growth techniques 3. Explain the working of detectors, realize the importance of Cosmic rays and its effects on earth
<i>STATISTICAL MECHANICS</i> MSCC054403	 After the completion of the course, students should be able to- 1. Learn the fundamental differences between classical and quantum statistics and their distribution laws 2. Grasp the basis of ensemble approach in statistical mechanics to a range of situations 3. Apply the principles of statistical mechanics to selected problems
INTEGRATED ELECTRONICS MSCC054404	 After the completion of the course, students should be able to- 1. Understand materials for integrated systems and integrated fabrication technology 2. Learn growth methods of thin films, lithography and other procedures for integrated fabrication technology 3. Grasp about Microelectromechanical Systems and nanoelectromechanical systems

Affiliated to Jiwaji University, Gwalior (M.P.)

सा विद्या या विमुक्तये

Phone No.: 07542-251641

41 Email : hegpgcgun@mp.gov.in

Website : https://highereducation.mp.gov.in/?orgid=179

COURSE TITLE	COURSE LEARNING OUTCOMES
GENERAL PHYSICS LAB (PRACTICAL)	At the end of the lab work, a student will be able to- Learn Hall effect in semiconductor, learn photoconductivity of CdS material, measurement of magnetic susceptibility of solids
MSCC054407	E
ELECTRONICS LAB (PRACTICAL)	<i>At the end of the lab work, a student will be able to-</i> Perform & learn through real-time data by using Practical set ups such as Amplifiers, Flip Flops, Multiplexers, Microwave Trainer
MSCC054408	

(Dr. Piyush Kumar Parashar) HOD Department of Physics

(Dr. Niranjan Shrotriya) CO-ORDINATOR, IQAC Govt. Postgraduate College, Guna (M.P.)

(Dr. B.K. Tiwari) PRINCIPAL Govt. Postgraduate College, Guna (M.P.)